Affiliation:
1. Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) “Giulio Natta,” Politecnico di Milano , Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Abstract
Using colloids effectively confined in two dimensions by a cell with a thickness comparable to the particle size, we investigate the nucleation and growth of crystallites induced by locally heating the solvent with a near-infrared laser beam. The particles, which are “thermophilic,” move towards the laser spot solely because of thermophoresis with no convection effects, forming dense clusters whose structure is monitored using two order parameters that gauge the local density and the orientational ordering. We find that ordering takes place when the cluster reaches an average surface density that is still below the upper equilibrium limit for the fluid phase of hard disks, meaning that we do not detect any sign of a proper “two-stage” nucleation from a glass or a polymorphic crystal structure. The crystal obtained at late growth stage displays a remarkable uniformity with a negligible amount of defects, arguably because the incoming particles diffuse, bounce, and displace other particles before settling at the crystal interface. This “fluidization” of the outer crystal edge may resemble the surface enhanced mobility giving rise to ultra-stable glasses by physical vapor deposition.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献