Domain wall and magnetic tunnel junction hybrid for on-chip learning in UNet architecture

Author:

Vadde Venkatesh1ORCID,Muralidharan Bhaskaran1ORCID,Sharma Abhishek2ORCID

Affiliation:

1. Department of Electrical Engineering, Indian Institute of Technology Bombay 1 , Powai, Mumbai 400076, India

2. Department of Electrical Engineering, Indian Institute of Technology Ropar 2 , Rupnagar, Punjab 140001, India

Abstract

We present a spintronic device based hardware implementation of UNet for segmentation tasks. Our approach involves designing hardware for convolution, deconvolution, rectified activation function (ReLU), and max pooling layers of the UNet architecture. We designed the convolution and deconvolution layers of the network using the synaptic behavior of the domain wall MTJ. We also construct the ReLU and max pooling functions of the network utilizing the spin hall driven orthogonal current injected MTJ. To incorporate the diverse physics of spin-transport, magnetization dynamics, and CMOS elements in our UNet design, we employ a hybrid simulation setup that couples micromagnetic simulation, non-equilibrium Green’s function, and SPICE simulation along with network implementation. We evaluate our UNet design on the CamVid dataset and achieve segmentation accuracies of 83.71% on test data, on par with the software implementation with 821 mJ of energy consumption for on-chip training over 150 epochs. We further demonstrate nearly one order of magnitude (10×) improvement in the energy requirement of the network using unstable ferromagnet (Δ = 4.58) over the stable ferromagnet (Δ = 45) based ReLU and max pooling functions while maintaining similar accuracy. The hybrid architecture comprising domain wall MTJ and unstable FM-based MTJ leads to an on-chip energy consumption of 85.79 mJ during training, with a testing energy cost of 1.55 µJ.

Funder

Science and Engineering Research Board

Ministry of Human Resource Development(MHRD), Govt of India

Publisher

AIP Publishing

Reference47 articles.

1. Semantic image segmentation and object labeling;IEEE Trans. Circuits Syst. Video Technol.,2007

2. Recent progress in semantic image segmentation;Artif. Intell. Rev.,2019

3. M. Thoma , “A survey of semantic segmentation,” arXiv:1602.06541 (2016).

4. Deep semantic segmentation of natural and medical images: A review;Artif. Intell. Rev.,2021

5. Deep learning for image and point cloud fusion in autonomous driving: A review;IEEE Trans. Intell. Transp. Syst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3