Radiation-driven diffusive transport of fast electrons in solar flares

Author:

Duclous R.1ORCID,Tikhonchuk V.23ORCID,Gremillet L.14ORCID,Martinez B.5ORCID,Leroy T.1,Masson Laborde P.-E.14ORCID,Pain J.-C.14ORCID,Decoster A.1

Affiliation:

1. CEA, DAM, DIF 1 , F-91297 Arpajon, France

2. Centre Lasers Intenses et Applications, Université de Bordeaux-CNRS-CEA 2 , 33405 Talence, France

3. Extreme Light Infrastructure ERIC, ELI Beamlines Facility 3 , 25241 Dolní Břežany, Czech Republic

4. Université Paris-Saclay, CEA, LMCE 4 , F-91680 Bruyères-le-Châtel, France

5. GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa 5 , Lisbon 1049-001, Portugal

Abstract

Fast electron scattering on plasma ions due to stimulated Bremsstrahlung is investigated and modeled. Comparison with Coulomb scattering suggests that stimulated Bremsstrahlung scattering can be dominant in low-density, radiation-driven plasmas, provided that the radiation spectrum has a sufficiently high brightness temperature in the neighborhood of the plasma frequency. While stimulated Bremsstrahlung scattering cannot be easily observed in laboratory plasmas due to their small size, it should operate in large-scale astrophysical plasmas, such as those met in the flaring solar corona. The effect of the solar microwave radiation on fast-electron scattering is evaluated through a parameterized flaring corona model. We find that stimulated Bremsstrahlung greatly enhances the fast-electron scattering frequency in the flare magnetic loop, leading the transport of deka-keV electrons to occur in the diffusion regime, characterized by significant precipitation rates. This prediction is consistent with the interpretation of the above-loop-top hard x-ray and microwave emissions from the X3.1 flare of August 24, 2002. Our analysis indicates that stimulated Bremsstrahlung may play an essential role in the dynamics of fast electrons trapped in solar flare loops.

Funder

European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3