Deep learning method for the super-resolution reconstruction of small-scale motions in large-eddy simulation

Author:

Zhao Qingyi12ORCID,Jin Guodong12ORCID,Zhou Zhideng12ORCID

Affiliation:

1. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

A super-resolution reconstruction model for the subgrid scale (SGS) turbulent flow field in large-eddy simulation (LES) is proposed, and it is called the meta-learning deep convolutional neural network (MLDCNN). Direct numerical simulation (DNS) data of isotropic turbulence are used as the dataset of the model. The MLDCNN is an unsupervised learning model, which only includes high-resolution DNS data without manually inputting preprocessed low-resolution data. In this model, the training process adopts the meta-learning method. First, in the a priori test, the SGS turbulent flow motions in the filtered DNS (FDNS) flow field are reconstructed, and the energy spectrum and probability density function of the velocity gradient of the DNS flow field are reconstructed with high accuracy. Then, in the a posteriori test, the super-resolution reconstruction of the LES flow field is carried out. The difficulty of LES flow field reconstruction is that it contains filtering loss and subgrid model errors relative to the DNS flow field. The super-resolution reconstruction of the LES flow field achieves good results through this unsupervised learning model. The proposed model makes a good prediction of small-scale motions in the LES flow field. This work improves the prediction accuracy of LES, which is crucial for the phenomena dominated by small-scale motions, such as relative motions of particles suspended in turbulent flows.

Funder

National Natural Science Foundation of China

The National Key Project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3