Connecting dynamic pore filling mechanisms with equilibrium and out of equilibrium configurations of fluids in nanopores

Author:

Kikkinides E. S.1ORCID,Gkogkos G.1,Monson P. A.2ORCID,Valiullin R.3ORCID

Affiliation:

1. Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

2. Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, USA

3. Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany

Abstract

In the present study, using dynamic mean field theory complemented by grand canonical molecular dynamics simulations, we investigate the extent to which the density distributions encountered during the dynamics of capillary condensation are related to those distributions at equilibrium or metastable equilibrium in a system at fixed average density (canonical ensemble). We find that the states encountered can be categorized as out of equilibrium or quasi-equilibrium based on the magnitude of the driving force for mass transfer. More specifically, in open-ended slit pores, pore filling via double bridging is an out of equilibrium process, induced by the dynamics of the system, while pore filling by single bridge formation is connected to a series of configurations that are equilibrium configurations in the canonical ensemble and that cannot be observed experimentally by a standard adsorption process, corresponding to the grand canonical ensemble. Likewise, in closed cap slits, the formation of a liquid bridge near the pore opening and its subsequent growth while the initially detached meniscus from the capped end remains immobilized are out of equilibrium processes that occur at large driving forces. On the other hand, at small driving forces, there is a continuous acceleration of the detached meniscus from the capped end, which is associated with complete reversibility in the limit of an infinitesimally small driving force.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3