Experimental examination of the phase transition of water on silica at 298 K

Author:

Saber Sepehr1ORCID,Narayanaswamy Nagarajan1ORCID,Ward C. A.1,Elliott Janet A. W.2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Toronto 1 , Toronto, Ontario M5S 3G8, Canada

2. Department of Chemical and Materials Engineering, University of Alberta 2 , Edmonton, Alberta T6G 1H9, Canada

Abstract

The objective of this study was to investigate the prediction of the wetting characteristics obtained from the equilibrium adsorption analysis using the Zeta adsorption isotherm approach with an experimental study. Water vapor’s adsorption and wetting characteristics on a hydroxylated and nano-polished silica substrate were studied in near-equilibrium conditions at temperatures near 298 K. Using a UV–visible interferometer, water vapor adsorbate film thicknesses were measured and converted into amount adsorbed per unit area. The current results show that the wetting transition occurred at an average subcooling value of 0.39 K, less than the predicted value of 0.49 K. All the different experimental observations showed growth of film thickness as a function of subcooling value with a maximum film thickness of 12.6 nm. The analysis of the results further showed that the maximum stable film was in a metastable state that then condensed in a dropwise manner, if perturbed by increasing the subcooling. The study further revealed that the adsorbate is unstable after transitioning. The solid surface energy calculated by including the near-equilibrium observations was comparable and close to that of the equilibrium studies, thus supporting solid surface energy as a material property.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Space Agency

European Space Agency

Canada Research Chairs

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical physics of controlled wettability and super surfaces;The Journal of Chemical Physics;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3