Influence of plasticity on the magnetic-field-induced bending deformation in a magneto-active elastomer with superparamagnetic nanoparticles

Author:

Kalita V. M.123ORCID,Dzhezherya Yu I.123ORCID,Cherepov S. V.2ORCID,Skirta Yu B.2,Kyryliuk A. V.2,Reshetniak S. O.3ORCID,Bodnaruk A. V.1ORCID,Ryabchenko S. M.1ORCID

Affiliation:

1. Institute of Physics, NAS of Ukraine 1 , 46 Nauky Ave., Kyiv 03028, Ukraine

2. Institute of Magnetism, NAS of Ukraine and MES of Ukraine 2 , 36-b Vernadskogo Blvd., Kyiv 03142, Ukraine

3. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 3 37 Beresteiskyi Ave., Kyiv 03056, Ukraine

Abstract

The influence of residual plastic deformation on the bending deformation of a magnetoactive elastomer (MAE) beam with non-coercive superparamagnetic manganite (La0.6Ag0.2Mn1.2O3) nanoparticles induced by a transverse uniform magnetic field has been studied. It was found that the MAE bending induced by the magnetic field switching-on/switching-off is mainly cyclic elastic. Plastic deformation leads to the emergence of residual bending and hysteresis in the field dependence of the bending. It was shown that the residual bending that appears after the first magnetic field switch-on eliminates the uncertainty of the bending direction at the next magnetization. Due to the residual plastic deformation, the bending direction of the superparamagnetic MAE with nanoparticles does not change when the direction of the applied magnetic field is inverted, in contrast to the MAE with microparticles where the uncertainty of the bending direction is eliminated due to the residual magnetization of weakly coercive ferromagnetic microparticles; therefore, the bending direction changes its sign with magnetic field reversion. In the low fields, the bending value for the MAEs with superparamagnetic particles is proportional to the square of the magnetic field strength. Model estimates on the residual deformation influence on the beam bending at beam magnetization reversal were obtained.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3