A thermally controlled high-Q metasurface lens

Author:

Klopfer E.1ORCID,Delgado H. Carr1ORCID,Dagli S.1ORCID,Lawrence Mark2ORCID,Dionne Jennifer A.13ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University 1 , Stanford, California 94305, USA

2. Department of Electrical and Systems Engineering, Washington University in St. Louis 2 , St. Louis, Missouri 63130, USA

3. Department of Radiology, Stanford University 3 , Stanford, California 94305, USA

Abstract

Dynamic metasurface control is a promising yet challenging prospect for next generation optical components. Here, we design and characterize a thermally controllable metasurface lens, with a high-quality-factor (high-Q) resonance working as both the basis of the lensing behavior and method for efficient modulation. Our high-Q lens is constructed via a zone plate architecture comprised of alternating regions with and without resonant character. Non-resonant regions block transmission, while resonant regions—with measured Qs up to ∼1350—transmit only on resonance. By leveraging the thermo-optic effect, we dynamically control the spectral position of the high-Q resonance to achieve wavelength selectivity of the focusing behavior. Due to the sharp spectral linewidth and amplitude variation of the high-Q resonance, thermal tuning can further result in metasurface switching, where the lensing behavior is changed between on and off states. For a device utilizing only moderate Q-factors of ∼350, the resonance's FWHM can be shifted with temperature changes of only 50 °C, and the device can be fully switched off when operating at 100 °C. Our work provides an initial experimental demonstration of dynamic control of a local high-Q wavefront shaping metasurface.

Funder

Air Force Office of Scientific Research

National Nanotechnology Coordinating Office

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3