Thin-airfoil aerodynamics in a rarefied gas wind tunnel: A theoretical study

Author:

Shapiro R.1ORCID,Manela A.1ORCID

Affiliation:

1. Faculty of Aerospace Engineering, Technion-Israel Institute of Technology , Haifa 32000, Israel

Abstract

We study the steady aerodynamic field and loadings about a thin flat plate placed in a wind tunnel under non-continuum conditions. Considering a two-dimensional straight tunnel configuration, the flow is driven by either density or temperature differences between the inlet and outlet tunnel reservoirs, producing a pressure gradient across the channel. Focusing on highly rarefied conditions, we derive a semi-analytic description for the gas flow field in the free-molecular limit for diffuse- and specular-wall configurations. The solution is valid at arbitrary differences between the inlet and outlet reservoirs as well as plate angles of attack α. The results are compared with direct simulation Monte Carlo calculations, indicating that the free-molecular description is valid through O(1) plate-size-based Knudsen numbers. The aerodynamic lift and drag forces are evaluated and their variations with α, reservoir conditions, and tunnel size are analyzed. At a fixed pressure ratio between the outlet and inlet reservoirs, the density-driven flow generates higher aerodynamic loads compared with its counterpart temperature-driven configuration, in line with the associated larger mass flow rate in the former. The results are discussed in light of the existing rarefied-gas description of the free-stream (non-confined) problem.

Funder

Israel Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3