Design and verification of a new non-contact piezoelectric energy harvester based on a sinusoidal exciting mechanism

Author:

Li Jie1,Qi Ji1,Wang Liang2ORCID

Affiliation:

1. College of Mechatronics, Changchun Polytechnic 1 , Changchun 130033, China

2. School of Mechanical Engineering, Northeast Electric Power University 2 , Jilin 132012, China

Abstract

In this paper, a new non-contact rotary piezoelectric energy harvester based on a sinusoidal exciting mechanism has been proposed. The energy transformation is realized in a non-contact form. The sinusoidal orbital rotor can act as a sinusoidal excitation to the contacts, and it can avoid damage to piezoelectric ceramics from direct strikes while bending piezoelectric cantilever beams. After a series of experiments, the prototype demonstrated an excellent output performance. Having explored the influence of the rotation speed on the output voltage, it reaches the peak when the rotation speed is 180 rpm and the maximum voltage is 18.6 V. The relationship between power and voltage was validated with the rise of resistance at the optimum speed. When the resistance is 10 kΩ, the power that arrives at the peak is 1.35 mW, and the maximum voltage is 12.1 V when the resistance is 200 kΩ. Some application experiments have been designed and verify the feasibility of the prototype; it can light up 18 LEDs and power some microelectronic equipment.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3