Numerical modeling of a wire mesh for aerodynamic noise reduction

Author:

Li Shuai1ORCID,Davidson Lars1ORCID,Peng Shia-Hui12ORCID

Affiliation:

1. Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

2. FOI, Swedish Defense Research Agency, SE-164 90 Stockholm, Sweden

Abstract

A novel wire mesh consisting of very fine wires and pores is numerically investigated for the purpose of noise reduction. To develop a numerical model for this wire mesh, a set of experimental flow-field data has been deployed for the model validation. The experimental data were measured with only 22% of the wind-tunnel cross section covered by the wire mesh, taking into account the vortex shedding from both sides of the wire-mesh fairing. It is found that existing wire-mesh models using a damping-type source term proportional to the square of flow velocity do not perform well in modeling this novel wire mesh. To tackle this issue, an improvement is proposed by additionally introducing a linear term to account for the permeability of the wire mesh, based on another set of experiments with the wind-tunnel cross section fully covered by the wire mesh. The proposed model is then validated against the experimental data, demonstrating its capability in modeling the wire mesh. Subsequently, the model is applied to a tandem cylinder configuration. Results show that a wide but short-span wire mesh significantly reduces the dominant tone of tandem cylinders, noise at higher frequencies, as well as the overall sound pressure levels.

Funder

Horizon 2020 Framework Programme

Swedish Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3