Cohomologies and deformations of O-operators on Lie triple systems

Author:

Chtioui Taoufik1ORCID,Hajjaji Atef12ORCID,Mabrouk Sami3ORCID,Makhlouf Abdenacer2ORCID

Affiliation:

1. Faculty of Sciences, University of Sfax 1 , B.P. 1171, 3038 Sfax, Tunisia

2. IRIMAS–Département de Mathématiques, University of Haute Alsace 2 , 18, Rue des Frères Lumière, F-68093 Mulhouse, France

3. Faculty of Sciences, University of Gafsa 3 , 2112 Gafsa, Tunisia

Abstract

In this paper, first, we provide a graded Lie algebra whose Maurer–Cartan elements characterize Lie triple system structures. Then, we use it to study cohomology and deformations of O-operators on Lie triple systems by constructing a Lie 3-algebra whose Maurer–Cartan elements are O-operators. Furthermore, we define a cohomology of an O-operator T as the Lie–Yamaguti cohomology of a certain Lie triple system induced by T with coefficients in a suitable representation. Therefore, we consider infinitesimal and formal deformations of O-operators from a cohomological viewpoint. Moreover, we provide relationships between O-operators on Lie algebras and associated Lie triple systems.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference40 articles.

1. Lie and Jordan triple systems;Am. J. Math.,1949

2. On the cohomology space of Lie triple systems;Kumamoto J. Sci. A,1960

3. The algebra of meson matrices;Math. Proc. Cambridge Philos. Soc.,1943

4. A structure theory of Lie triple systems;Trans. Am. Math. Soc.,1952

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3