Effects of nutrient concentration and scaffold elasticity on the tissue growth in a tissue engineering scaffold channel

Author:

Fattahpour Haniyeh1ORCID,Sanaei Pejman1ORCID

Affiliation:

1. Department of Mathematics and Statistics, Georgia State University , Atlanta, Georgia 30303, USA

Abstract

Tissue-engineering scaffolds contain channels lined by cells that allow nutrient-rich culture medium to pass through to encourage cell proliferation. Several factors have significant impacts on the tissue growth, including the nutrient flow rate, concentration in the feed, scaffold elasticity, and cell properties. Recent studies have investigated these effects separately; however, in this work, we examine all of them simultaneously. Our objectives in this work are as follows: (i) developing a mathematical model describing the nutrient flow dynamics and concentration, scaffold elasticity, and cell proliferation; (ii) solving the model and then simulating the cell proliferation process; and (iii) optimizing the initial configuration of the scaffold channels to maximize the cell growth. The results of our study demonstrate that the rate of nutrient consumption by the cells (cell hunger rate) and the scaffold elastic compliance have an impact on tissue growth, with higher cell hunger rates leading to longer incubation periods, while scaffold elastic compliance slightly affects overall growth. Furthermore, decreasing the scaffold elastic compliance while maintaining a constant nutrient consumption rate results in an optimal funnel-shaped channel geometry, where the upper part of the channel is larger than the downstream, promoting enhanced tissue integration and functionality.

Funder

Georgia State University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3