Combining electron spin resonance spectroscopy with scanning tunneling microscopy at high magnetic fields

Author:

Drost Robert1,Uhl Maximilian1,Kot Piotr1,Siebrecht Janis1,Schmid Alexander2,Merkt Jonas2ORCID,Wünsch Stefan2ORCID,Siegel Michael2,Kieler Oliver3,Kleiner Reinhold4ORCID,Ast Christian R.1ORCID

Affiliation:

1. Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

2. Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Hertzstr. 16, 76187 Karlsruhe, Germany

3. Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

4. Physikalisches Institut, Center for Quantum Science (CQ) and LISA+, Universität Tübingen, 72076 Tübingen, Germany

Abstract

The continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal. Limitations in the available frequency range for electron spin resonance STM (ESR-STM) mean that many instruments operate in the thermal noise regime. We resolve challenges in signal delivery to extend the operational frequency range of ESR-STM by more than a factor of two and up to 100 GHz, making the Zeeman energy the dominant energy scale at achievable cryogenic temperatures of a few hundred millikelvin. We present a general method for augmenting existing instruments into ESR-STM to investigate spin dynamics in the high-field limit. We demonstrate the performance of the instrument by analyzing inelastic tunneling in a junction driven by a microwave signal and provide proof of principle measurements for ESR-STM.

Funder

H2020 European Research Council

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3