First-principles redox energy estimates under the condition of satisfying the general form of Koopmans’ theorem: An atomistic study of aqueous iron

Author:

Shirani Javad1ORCID,Farraj Sinan Abi1ORCID,Yuan Shuaishuai1ORCID,Bevan Kirk H.12ORCID

Affiliation:

1. Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec H3A 0C5, Canada

2. Centre for the Physics of Materials, Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada

Abstract

In this work, we explore the relative accuracy to which a hybrid functional, in the context of density functional theory, may predict redox properties under the constraint of satisfying the general form of Koopmans’ theorem. Taking aqueous iron as our model system within the framework of first-principles molecular dynamics, direct comparison between computed single-particle energies and experimental ionization data is assessed by both (1) tuning the degree of hybrid exchange, to satisfy the general form of Koopmans’ theorem, and (2) ensuring the application of finite-size corrections. These finite-size corrections are benchmarked through classical molecular dynamics calculations, extended to large atomic ensembles, for which good convergence is obtained in the large supercell limit. Our first-principles findings indicate that while precise quantitative agreement with experimental ionization data cannot always be attained for solvated systems, when satisfying the general form of Koopmans’ theorem via hybrid functionals, theoretically robust estimates of single-particle redox energies are most often arrived at by employing a total energy difference approach. That is, when seeking to employ a value of exact exchange that does not satisfy the general form of Koopmans’ theorem, but some other physical metric, the single-particle energy estimate that would most closely align with the general form of Koopmans’ theorem is obtained from a total energy difference approach. In this respect, these findings provide important guidance for the more general comparison of redox energies computed via hybrid functionals with experimental data.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3