The vibration of a spring damped vibrator under a long cylindrical squeeze film force

Author:

Abstract

Squeeze film effects between two concentric cylinders are common and important in many mechanical systems. The models for cylindrical squeeze film force and vibrating system with squeeze film effects have not been well understood. In this paper, we model a cylindrical squeeze film force starting from the simplification of the full Navier–Stokes equations and then get an expression for the squeeze film force. We study the influence of a harmonic exciting force on a spring damped vibrator with squeeze film effect by establishing a non-linear mathematical model, and we investigate the behavior of the system numerically. As a forced vibrating system, the fundamental frequency of the response is consistent with the exciting frequency; the response of the resultant non-linear system shows obvious superharmonic phenomenon; the number of the superharmonic peaks increase with Reynolds number, and the superharmonic components mainly come from the non-linearity of the flow convection.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3