Hydrodynamic force and torque models for cylindrical particles in a wide range of aspect ratios

Author:

Wang JingliangORCID,Chen XinkeORCID,Ma LunORCID,Jiang MaoqiangORCID,Fang Qingyan,Tan PengORCID,Zhang ChengORCID,Chen GangORCID,Yin ChungenORCID

Abstract

During the pneumatic conveyance of biomass in a coal-fired power station boiler, biomass particles have cylindrical shapes with different aspect ratios. They move through the fluid at any angle and rotate strongly. However, highly accurate and general models of the drag, lift, and torque coefficients (CD, CL, and CT) for biomass particles in a wide range of aspect ratios, especially the CT model and the high aspect ratios, are currently lacking. This paper presents detailed direct numerical simulations of the flow around cylindrical cylinders with varying aspect ratios (6 ≤ AR ≤ 22), Reynolds numbers (100 ≤ Re ≤ 2000), and angles of incidence (0° ≤ θ ≤ 90°). The simulation was conducted using the OpenFOAM solver with the body-fitted mesh method. The flow characteristics and force coefficients of cylindrical particles with different AR were systematically analyzed. New functional correlations between CD, CL, and CT and AR, Re, and θ values were established. The mean squared errors for CD, CL, and CT were 8.8 × 10–2, 2.4 × 10–2, and 4.7 × 10–2, with average relative errors of 5.8%, 3.5%, and 8.17%, respectively. A comparison of the results with other experimental and simulation data in previous literatures showed that the new CD and CL models have considerable higher predictive ability. The generality of the new CD model expanding to low ARs of 1.5 and 3 is verified finally. The new force and torque models are expected to improve the accuracy of Eulerian–Lagrangian simulations of various cylindrical particle-laden flows in the utility of biomass energy.

Funder

National Natural Science Foundation of China

National Key R&D Program of china & Innovation Fund Denmark

Fundamental Research Funds for Cental Universities

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3