Tunable spin–charge conversion in class-I topological Dirac semimetals

Author:

Li Rui-Hao1ORCID,Shen Pengtao1ORCID,Zhang Steven S.-L.1ORCID

Affiliation:

1. Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA

Abstract

We theoretically demonstrate that class-I topological Dirac semimetals (TDSMs) can provide a platform for realizing both electrically and magnetically tunable spin–charge conversion. With time-reversal symmetry, the spin component along the uniaxial rotation axis ( z axis) is approximately conserved, which leads to an anisotropic spin Hall effect; the resulting spin Hall current relies on the relative orientation between the external electric field and the z axis. The application of a magnetic field, on the other hand, breaks time-reversal symmetry, driving the TDSM into a Weyl semimetal phase and, consequently, partially converting the spin current to a charge Hall current. Using the Kubo formulas, we numerically evaluate the spin and charge Hall conductivities based on a low-energy TDSM Hamiltonian together with the Zeeman coupling. Besides the conventional tensor element of the spin Hall conductivity [Formula: see text], we find that unconventional components, such as [Formula: see text] and [Formula: see text], also exist and vary as the magnetic field is rotated. Likewise, the charge Hall conductivity also exhibits appreciable tunability upon variation of the magnetic field. We show that such tunability—as well as large spin–charge conversion efficiency—arises from the interplay of symmetry and band topology of the TDSMs.

Funder

Case Western Reserve University

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3