Visible light responsive MWCNT decorated g-C3N4/Bi2S3 photocatalyst for malachite green dye degradation

Author:

Swathi A. C.1ORCID,Chandran Maneesh1ORCID

Affiliation:

1. Department of Physics, National Institute of Technology Calicut , Kerala 673601, India

Abstract

A highly efficient ternary nanocomposite consisting of multiwalled carbon nanotubes (MWCNTs), graphitic carbon nitride (g-C3N4), and bismuth sulfide (Bi2S3) is developed via a simple one-step hydrothermal route. The structural, morphological, and optical properties of the developed nanocomposites are systematically analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, electron microscopy, UV–vis diffuse reflectance spectroscopy, and Brunauer, Emmett, and Teller analysis. The ternary nanocomposite g-C3N4/Bi2S3/MWCNT-6 wt. % exhibits two times higher photocatalytic performance (99.6%) than g-C3N4/Bi2S3 and g-C3N4/MWCNT binary heterostructures under visible light irradiation within 50 min. The enhanced photocatalytic activity is attributed to the strong absorption of visible light and enhanced charge carriers separation efficiency, high surface area, and synergistic effect of g-C3N4, Bi2S3, and MWCNTs. A reaction mechanism for enhanced photocatalytic performance has also been proposed. The effect of different scavengers is performed to determine the role of the main reactive species responsible for dye degradation, which reveals that electrons are the main reactive species responsible for dye degradation. Moreover, the g-C3N4/Bi2S3/MWCNT ternary photocatalyst maintained excellent stability even after several cycles. Thus, the study offers a promising, stable, highly efficient, and visible-light-driven photocatalyst for dye wastewater purification.

Funder

University Grants Commission

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3