Multiparticle collision dynamics simulations of hydrodynamic interactions in colloidal suspensions: How well does the discrete particle approach do at short range?

Author:

Peng Ying-Shuo1ORCID,Sinno Talid1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, USA

Abstract

The multiparticle collision dynamics (MPCD) simulation method is an attractive technique for studying the effects of hydrodynamic interactions in colloidal suspensions because of its flexibility, computational efficiency, and ease of implementation. Here, we analyze an extension of the basic MPCD method in which colloidal particles are discretized with a surface mesh of sensor nodes/particles that interact with solvent particles (MPCD + Discrete Particle or MPCD + DP). We use several situations that have been described analytically to probe the impact of colloidal particle mesh resolution on the ability of the MPCD + DP method to resolve short-ranged hydrodynamic interactions, which are important in crowded suspensions and especially in self-assembling systems that create high volume fraction phases. Specifically, we consider (A) hard-sphere diffusion near a wall, (B) two-particle diffusion, (C) hard-sphere diffusion in crowded suspensions, and (D) the dynamics of aggregation in an attractive colloidal suspension. We show that in each case, the density of sensor nodes plays a significant role in the accuracy of the simulation and that a surprisingly high number of surface nodes are needed to fully capture hydrodynamic interactions.

Funder

University of Pennsylvania

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3