Affiliation:
1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University 1 , Hong Kong 999077, China
Abstract
Vortices are generated across a wide range of scales due to the interaction between in-stream vegetation and surrounding flows, significantly influencing hydro-geomorphodynamics in earth surface water systems. Recent advance in vegetation patch hydrodynamics has revealed that the elongation of the middle channel patch can generate complex wake flow patterns by adjusting the bleed flow from the patch and triggering the patch-edge Kelvin–Helmholtz (KH) vortices. With a broader range of experimental configurations, this study reveals how the patch wake mixing is apparently strengthened by the presence of KH vortices, indicated by a larger steady wake velocity, a shorter steady wake length, and a damped energy of wake von Karman vortex. Furthermore, we quantify these characteristic metrics of patch wake behavior with and without the influence of KH vortices. Our findings provide insights into the role of vegetation-induced vortex interactions in regulating mixing processes, thereby promoting informed practices in environmental flows.
Funder
Research Grants Council, University Grants Committee
Hong Kong Polytechnic University
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献