Author:
Sujatha K.,Bhavani N. P. G.,Kirubakaran D.,Ganesan A.,Kanya N.,Kalaivani A.,Devi C. H. Sarada,Kalpalatha T.,Sankari B. Rengammal
Reference9 articles.
1. The impact of the use of new technologies on farmers’ wheat yield in Ethiopia: evidence from a randomized control trial
2. Ali, I., Cawkwell, F., Dwyer, E., & Green, S. (2016). Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach (pp. 1–16).
3. Amara, J., Bouaziz, B., Algergawy, A., 2017. A deep learning-based approach for Banana leaf diseases classification. B. Mitschang et al. (Hrsg.): BTW 2017—Workshopband, lecture notes in informatics (LNI), GesellschaftfCurInformatik, Bonn 79–88.
4. Bah, M. D., Dericquebourg, E., Hafiane, A., & Canals, R. (2018). Deep learning based classification system for identifying weeds using high-resolution UAV imagery. In In science and information conference (pp. 176– 187). Springer, Cham: Springer International Publishing.
5. Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images