A novel approach to interface high-Q Fabry–Pérot resonators with photonic circuits

Author:

Cheng Haotian1ORCID,Jin Naijun1,Dai Zhaowei1ORCID,Xiang Chao2ORCID,Guo Joel2ORCID,Zhou Yishu1ORCID,Diddams Scott A.345ORCID,Quinlan Franklyn3,Bowers John2ORCID,Miller Owen1ORCID,Rakich Peter1

Affiliation:

1. Department of Applied Physics, Yale University 1 , New Haven, Connecticut 06520, USA

2. Department of Electrical and Computer Engineering, University of California 2 , Santa Barbara, California 93106, USA

3. National Institute of Standards and Technology 3 , 325 Broadway, Boulder, Colorado 80305, USA

4. Department of Physics, University of Colorado Boulder 4 , 440 UCB, Boulder, Colorado 80309, USA

5. Electrical Computer and Energy Engineering, University of Colorado 5 , Boulder, Colorado 80309, USA

Abstract

The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry–Pérot resonators with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry–Pérot resonators with a silicon photonic circuit. This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound–Drever–Hall frequency locking, while also suppressing unwanted back reflections from the Fabry–Pérot resonator. Using inverse design principles, we design and fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface several reflective off-chip devices.

Funder

Defense Advanced Research Projects Agency

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3