Engineering interface upgrade of LiNi0.8Co0.1Mn0.1O2 cells from PYR1(4CN)(2O2)TFSI with cyano and ether groups as dual functional pyrrolidine electrolyte

Author:

Qiu Chao1ORCID,Hong Yun12ORCID,Sun Yajie1ORCID,Li Zhiqiang1ORCID,Huang Wenzhi1ORCID,Pan Jiajie1ORCID,Li Junhao1ORCID,Ren Jie1ORCID,Zhao Wei3ORCID,Qin Diancheng3ORCID,Shi Kaixiang12ORCID,Liu Quanbing12ORCID

Affiliation:

1. Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology 1 , Guangzhou 510006, China

2. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) 2 , Jieyang 515200, China

3. Zhuhai CosMX Battery Co., Ltd 3 , Zhuhai 519100, China

Abstract

It is a concern that cells with lithium (Li) metal anodes and LiNi0.8Co0.1Mn0.1O2 (NCM 811) cathodes exhibit high energy density. However, the chemical and electrochemical properties of an original solid electrolyte interphase (SEI) film formed by the Li metal reaction are unstable, resulting in uneven plating and rapid growth of Li dendrites. Due to the high nickel content of NCM 811, Ni4+ dissolved at the electrode interface leads to side reactions and irreversible rock salt structure, forming an unstable cathodic electrolyte interphase (CEI) film. Ion liquid (IL) electrolytes provide a strategy for forming stable SEI/CEI and keeping NCM 811 structural stability, but their high viscosity has limited their electrochemical performance. Functionalize pyrrolidine with ether and cyano groups is introduced, the high flexibility of the ether group can reduce the viscosity of the IL-based electrolyte, and the oxygen atom can provide Li+ coordination sites to accelerate Li+ transport. The strong electron absorption ability of the cyano group shows the strong coordination ability with transition metal ions to inhibit the erosion of CEI by side reactions. Under the dual function of cyano and ether groups, more TFSI− participate in the formation of the SEI film, which leads to the increase in beneficial components with high ionic conductivity, further inhibiting dendrite growth and promoting uniform plating. Thus, LiǁLi cells, with 0.5 wt. % 1-cyanopropyl-1-diethyl ether pyrrolidine bisfluoromethanesulfonimide salt [PYR1(4CN)(2O2)TFSI], revealed excellent plating voltage stability for more than 450 h. After 200 cycles, the discharge specific capacity of LiǁNCM 811 cells was 123 mAh g−1 and an excellent capacity retention of 62.1% at 1 C. This work shows a strategy of improving SEI/CEI from the electrolyte with cyano and ether groups and provides a feasible horizon in the long-term cycle performance of lithium metal batteries.

Funder

Key Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3