Abstract
CO2 possesses several advantages, including strong solubility, effective viscosity reduction ability, and low miscible pressure, making it a promising candidate for enhanced oil recovery (EOR). Additionally, due to its adsorption capture mechanism, shale formations are considered ideal environments for CO2 storage. However, the influence of heterogeneity of shale multi-scale structure on CO2 migration mechanism, EOR, and storage mechanism is not clear. In this study, a heterogeneous shale structure model containing fractures and matrix was designed based on scanning electron microscope. The multiphase–multicomponent–multirelaxation model was used to study the fluid migration mechanism in the process of miscible CO2 huff-n-puff in shale reservoir. By analyzing density variations, velocity changes, and pressure distributions, the effects of diffusion coefficient, adsorption parameters, and fracture size were studied. Furthermore, by changing the matrix structure, the influence of heterogeneity on the law of oil and gas migration was explored. Additionally, a comparison between CO2 and water was performed. Finally, the influence of reservoir heterogeneity on fluid transport mechanism was studied. The results show that EOR and CO2 storage rate (CSR) are proportional to the diffusion coefficient. The main factor affecting the CSR is the adsorption capacity of rock to CO2. The larger CO2–oil contact area between the fracture and the matrix leads to a larger CSR, highlighting the importance of induced fractures. In addition, it was found that CO2 huff-n-puff was superior to water flooding, showing an EOR performance advantage of about 15%. This study is helpful for the practical application of CO2 huff-n-puff technology in the field of unconventional oil and gas development and CO2 storage.
Funder
National Natural Science Foundation of China
National Science and Major Project of China