X-ray imaging and electron temperature evolution in laser-driven magnetic reconnection experiments at the national ignition facility

Author:

Valenzuela-Villaseca Vicente1ORCID,Molina Jacob M.12ORCID,Schaeffer Derek B.3ORCID,Malko Sophia2ORCID,Griff-McMahon Jesse12ORCID,Lezhnin Kirill2ORCID,Rosenberg Michael J.4ORCID,Hu S. X.4ORCID,Kalantar Dan5ORCID,Trosseille Clement5ORCID,Park Hye-Sook5ORCID,Remington Bruce A.5ORCID,Fiksel Gennady6ORCID,Uzdensky Dmitri7ORCID,Bhattacharjee Amitava12ORCID,Fox William12ORCID

Affiliation:

1. Department of Astrophysical Sciences, Princeton University 1 , Princeton, New Jersey 08544, USA

2. Princeton Plasma Physics Laboratory 2 , Princeton, New Jersey 08540, USA

3. Department of Physics and Astronomy, University of California Los Angeles 3 , Los Angeles, California 90095, USA

4. Laboratory for Laser Energetics, University of Rochester 4 , Rochester, New York 14623, USA

5. Lawrence Livermore National Laboratory 5 , Livermore, California 94550, USA

6. Center for Ultrafast Optical Science, University of Michigan 6 , Ann Arbor, Michigan 48109, USA

7. Center for Integrated Plasma Studies, University of Colorado 7 , Boulder, Colorado 80309, USA

Abstract

We present results from x-ray imaging of high-aspect-ratio magnetic reconnection experiments driven at the National Ignition Facility. Two parallel, self-magnetized, elongated laser-driven plumes are produced by tiling 40 laser beams. A magnetic reconnection layer is formed by the collision of the plumes. A gated x-ray framing pinhole camera with micro-channel plate detector produces multiple images through various filters of the formation and evolution of both the plumes and current sheet. As the diagnostic integrates plasma self-emission along the line of sight, two-dimensional electron temperature maps ⟨Te⟩Y are constructed by taking the ratio of intensity of these images obtained with different filters. The plumes have a characteristic temperature ⟨Te⟩Y=240 ± 20 eV at 2 ns after the initial laser irradiation and exhibit a slow cooling up to 4 ns. The reconnection layer forms at 3 ns with a temperature ⟨Te⟩Y=280 ± 50 eV as the result of the collision of the plumes. The error bars of the plumes and current sheet temperatures separate at 4 ns, showing the heating of the current sheet from colder inflows. Using a semi-analytical model, we survey various heating mechanisms in the current sheet. We find that reconnection energy conversion would dominate at low density (ne≲7×1018 cm−3) and electron-ion collisional drag at high-density (≳1019 cm−3).

Funder

National Nuclear Security Administration

Office of Science

National Science Foundation Graduate Research Fellowship Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3