A method to prevent clogging and clustering in microfluidic systems using microbubble streaming

Author:

Bakhtiari Amirabas1ORCID,Kähler Christian J.1

Affiliation:

1. Institute for Fluid Mechanics and Aerodynamics, Bundeswehr University Munich , Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany

Abstract

This paper presents an innovative strategy to address the issues of clogging and cluster-related challenges in microchannels within microfluidic devices. Leveraging three-dimensional (3D) microbubble streaming as a dynamic solution, our approach involves the controlled activation of microbubbles near channel constrictions, inducing microstreaming with distinctive features. This microstreaming, characterized by a high non-uniform 3D gradient and significant shear stress, effectively inhibits arch formation at constrictions and disintegrates particle clusters, demonstrating real-time prevention of clogging incidents and blockages. This study includes experimental validation of the anti-clogging technique, a detailed examination of microstreaming phenomena, and their effects on clogging and clustering issues. It also incorporates statistical analyses performed in various scenarios to verify the method’s effectiveness and adaptability. Moreover, a versatile control system has been designed that operates in event-triggered, continuous, or periodic modes, which suits different lab-on-a-chip applications and improves the overall functionality of microfluidic systems.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3