Trapping proteins on nanopores by dielectrophoresis

Author:

Colburn Taylor1ORCID,Matyushov Dmitry V.2ORCID

Affiliation:

1. Department of Physics, Arizona State University 1 , P.O. Box 871504, Tempe, Arizona 85287-1504, USA

2. School of Molecular Sciences and Department of Physics, Arizona State University 2 , P.O. Box 871504, Tempe, Arizona 85287-1504, USA

Abstract

Interest in the phenomenon of dielectrophoresis has gained significant attention in recent years due to its potential for sorting, manipulation, and trapping of solutes, such as proteins, in aqueous solutions. For many decades, protein dielectrophoresis was considered impossible, as the predicted magnitude of the force arising from experimentally accessible field strengths could not out-compete thermal energy. This conclusion was drawn from the mainstay Clausius–Mossotti (CM) susceptibility applied to the dielectrophoretic force. However, dielectric interfacial polarization leading to the CM result does not account for a large protein dipole moment that is responsible for the dipolar mechanism of dielectrophoresis outcompeting the CM induction mechanism by three to four orders of magnitude in the case of proteins. Here, we propose an explicit geometry within which the dipolar susceptibility may be put to the test. The electric field and dielectrophoretic force are explicitly calculated, and the dependence of the trapping distance on the strength of the applied field is explored. A number of observable distinctions between the dipolar and induction mechanisms are identified.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3