The Texas A&M University Hypervelocity Impact Laboratory: A modern aeroballistic range facility

Author:

Rogers Jacob A.1ORCID,Bass Nathaniel1,Mead Paul T.1,Mote Aniket1,Lukasik Gavin D.1,Intardonato Matthew1,Harrison Khari1,Leaverton James D.1,Kota Kalyan Raj2ORCID,Wilkerson Justin W.1ORCID,Reddy J. N.1ORCID,Kulatilaka Waruna D.1,Lacy Thomas E.1ORCID

Affiliation:

1. J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, 400 Bizzell St., College Station, Texas 77843, USA

2. Bush Combat Development Complex, 717 RELLIS Parkway, Bryan, Texas 77807, USA

Abstract

Novel engineering materials and structures are increasingly designed for use in severe environments involving extreme transient variations in temperature and loading rates, chemically reactive flows, and other conditions. The Texas A&M University Hypervelocity Impact Laboratory (HVIL) enables unique ultrahigh-rate materials characterization, testing, and modeling capabilities by tightly integrating expertise in high-rate materials behavior, computational and polymer chemistry, and multi-physics multiscale numerical algorithm development, validation, and implementation. The HVIL provides a high-throughput test bed for development and tailoring of novel materials and structures to mitigate hypervelocity impacts (HVIs). A conventional, 12.7 mm, smooth bore, two-stage light gas gun (2SLGG) is being used as the aeroballistic range launcher to accelerate single and simultaneously launched projectiles to velocities in the range 1.5–7.0 km/s. The aeroballistic range is combined with conventional and innovative experimental, diagnostic, and modeling capabilities to create a unique HVI and hypersonic test bed. Ultrahigh-speed imaging (10M fps), ultrahigh-speed schlieren imaging, multi-angle imaging, digital particle tracking, flash x-ray radiography, nondestructive/destructive inspection, optical and scanning electron microscopy, and other techniques are being used to characterize HVIs and study interactions between hypersonic projectiles and suspended aerosolized particles. Additionally, an overview of 65 2SLGG facilities operational worldwide since 1990 is provided, which is the most comprehensive survey published to date. The HVIL aims to ( i) couple recent theoretical developments in shock physics with advances in numerical methods to perform HVI risk assessments of materials and structures, ( ii) characterize environmental effects (water, ice, dust, etc.) on hypersonic vehicles, and ( iii) address key high-rate materials and hypersonics research problems.

Funder

National Science Foundation

Army Research Office

Engineer Research and Development Center

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3