Affiliation:
1. Department of Physics and Materials Science, University of Luxembourg, 41 rue du Brill, Belvaux L-4422, Luxembourg
2. Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux L-4422, Luxembourg
Abstract
Doping in the chalcopyrite Cu(In,Ga)Se2 is determined by intrinsic point defects. In the ternary CuInSe2, both N-type conductivity and P-type conductivity can be obtained depending on the growth conditions and stoichiometry: N-type is obtained when grown Cu-poor, Se-poor, and alkali-free. CuGaSe2, on the other hand, is found to be always a P-type semiconductor that seems to resist all kinds of N-type doping, no matter whether it comes from native defects or extrinsic impurities. In this work, we study the N-to-P transition in Cu-poor Cu(In,Ga)Se2 single crystals in dependence of the gallium content. Our results show that Cu(In,Ga)Se2 can still be grown as an N-type semiconductor until the gallium content reaches the critical concentration of 15%–19%, where the N-to-P transition occurs. Furthermore, trends in the Seebeck coefficient and activation energies extracted from temperature-dependent conductivity measurements demonstrate that the carrier concentration drops by around two orders of magnitude near the transition concentration. Our proposed model explains the N-to-P transition based on the differences in formation energies of donor and acceptor defects caused by the addition of gallium.
Funder
Fonds National de la Recherche Luxembourg
Subject
General Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献