Energy preserving reduced-order modeling of the rotating thermal shallow water equation

Author:

Karasözen B.12ORCID,Yıldız S.1ORCID,Uzunca M.3ORCID

Affiliation:

1. Institute of Applied Mathematics, Middle East Technical University, Ankara 06815, Turkey

2. Department of Mathematics, Middle East Technical University, Ankara 06815, Turkey

3. Department of Mathematics, Sinop University, Sinop 57000, Turkey

Abstract

In this paper, reduced-order models (ROMs) are developed for the rotating thermal shallow water equation (RTSWE) in the non-canonical Hamiltonian form with state-dependent Poisson matrix. The high fidelity full solutions are obtained by discretizing the RTSWE in space with skew-symmetric finite-differences, while preserving the Hamiltonian structure. The resulting skew-gradient system is integrated in time by the energy preserving average vector field (AVF) method. The ROM is constructed by applying proper orthogonal decomposition with the Galerkin projection, preserving the reduced skew-gradient structure, and integrating in time with the AVF method. The nonlinear terms of the Poisson matrix and Hamiltonian are approximated with the discrete empirical interpolation method to reduce the computational cost. The solutions of the resulting linear-quadratic reduced system are accelerated by the use of tensor techniques. The accuracy and computational efficiency of the ROMs are demonstrated for a numerical test problem. Preservation of the energy (Hamiltonian) and other conserved quantities, i.e., mass, buoyancy, and total vorticity, show that the reduced-order solutions ensure the long-term stability of the solutions while exhibiting several orders of magnitude computational speedup over the full-order model. Furthermore, we show that the ROMs are able to accurately predict the test and training data and capture the system behavior in the prediction phase.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3