Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation

Author:

Han Hyeong-Tark1ORCID,Joo Sungmin1ORCID,Sakaue Takahiro2ORCID,Jeon Jae-Hyung13ORCID

Affiliation:

1. Department of Physics, POSTECH 1 , Pohang 37673, Republic of Korea

2. Department of Physical Sciences, Aoyama Gakuin University 2 , Sagamihara, Kanagawa 252-5258, Japan

3. Asia Pacific Center for Theoretical Physics 3 , Pohang 37673, Republic of Korea

Abstract

In a viscoelastic environment, the diffusion of a particle becomes non-Markovian due to the memory effect. An open question concerns quantitatively explaining how self-propulsion particles with directional memory diffuse in such a medium. Based on simulations and analytic theory, we address this issue with active viscoelastic systems where an active particle is connected with multiple semiflexible filaments. Our Langevin dynamics simulations show that the active cross-linker displays superdiffusive and subdiffusive athermal motion with a time-dependent anomalous exponent α. In such viscoelastic feedback, the active particle always exhibits superdiffusion with α = 3/2 at times shorter than the self-propulsion time (τA). At times greater than τA, the subdiffusive motion emerges with α bounded between 1/2 and 3/4. Remarkably, active subdiffusion is reinforced as the active propulsion (Pe) is more vigorous. In the high Pe limit, athermal fluctuation in the stiff filament eventually leads to α = 1/2, which can be misinterpreted with the thermal Rouse motion in a flexible chain. We demonstrate that the motion of active particles cross-linking a network of semiflexible filaments can be governed by a fractional Langevin equation combined with fractional Gaussian noise and an Ornstein–Uhlenbeck noise. We analytically derive the velocity autocorrelation function and mean-squared displacement of the model, explaining their scaling relations as well as the prefactors. We find that there exist the threshold Pe (Pe∗) and crossover times (τ∗ and τ†) above which active viscoelastic dynamics emerge on timescales of τ∗≲ t ≲ τ†. Our study may provide theoretical insight into various nonequilibrium active dynamics in intracellular viscoelastic environments.

Funder

National Research Foundation of Korea

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3