Synchrotron based transient x-ray absorption spectroscopy for emerging solid-state energy materials

Author:

Nyakuchena James1ORCID,Zhang Xiaoyi2,Huang Jier13ORCID

Affiliation:

1. Department of Chemistry, Marquette University 1 , Milwaukee, Wisconsin 53201, USA

2. X-ray Science Division, Argonne National Laboratory 2 , Lemont, Illinois 60349, USA

3. Department of Chemistry and Schiller Institute of Integrated Science and Society, Boston College 3 , Chestnut Hill, Massachusetts 02467, USA

Abstract

The rational design of cutting-edge materials for an efficient solar energy conversion process is a challenging task, which demands a fundamental understanding of the mechanisms operative during the photoinduced physical and chemical reactions. In response to these issues, progress in the field has steered attention toward the use of time-resolved spectroscopic techniques to resolve the multiple intermediate species involved in these photoinduced reactions. Thanks to the advent of pump–probe technique, which leads to the development of various time-resolved spectroscopic methods, significant progress has been made in understanding the photophysical and photochemical properties (e.g., excited state dynamics, charge transfer mechanism, charge separation dynamics, etc.) of energy materials. Synchrotron-based x-ray transient absorption (XTA) spectroscopy is one of the most important time-resolved techniques to unravel the direct correlation of the material structure with their photophysical properties owing to its unique capability in directly observing electronic and structural evolution simultaneously. The aim of this work is to provide a systematic overview of the recent progress in using XTA for capturing the structural dynamics associated with excited state and charge separation dynamics in emerging solid-state energy materials.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3