Recent trends in marine microplastic modeling and machine learning tools: Potential for long-term microplastic monitoring

Author:

Phan Samantha1ORCID,Luscombe Christine K.1ORCID

Affiliation:

1. pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology , Onna, Okinawa 904–0495, Japan

Abstract

The increase in the global demand for plastics, and more recently during the pandemic, is a major concern for the future of plastic waste pollution and microplastics. Efficient microplastic monitoring is imperative to understanding the long-term effects and progression of microplastic effects in the environment. Numerical models are valuable in studying microplastic transport as they can be used to examine the effects of different parameters systematically to help elucidate the fate and transport processes of microplastics, thus providing a holistic view of microplastics in the ocean environment. By incorporating physical parameters (such as size, shape, density, and identity of microplastics), numerical models have gained better understanding of the physics of microplastic transport, predicted sinking velocities more accurately, and estimated microplastic pathways in marine environments. However, availability of large amounts of information about microplastic physical and chemical parameters is sparse. Machine learning and computer-vision tools can aid in acquiring environmental information and provide input to develop more accurate models and verify their predictions. More accurate models can further the understanding of microplastic transport, facilitate monitoring efforts, and thus optimize where more data collection can take place to ultimately improve machine learning tools. This review offers a perspective on how image-based machine learning can be exploited to help uncover the physics of microplastic transport behaviors. Additionally, the authors hope the review inspires studies that can bridge the gap between numerical modeling and machine learning for microplastic analysis to exploit their joined potential.

Funder

Okinawa Institute of Science and Technology Graduate University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3