Influence of molecular parameters on the representativeness of interfacial properties of simple fluids

Author:

Nicolás-Apolinar B.1,Ibarra-Tandi B.1ORCID,López-Lemus J.1ORCID,Luis-Jiménez D. P.2ORCID

Affiliation:

1. Facultad de Ciencias, Universidad Autónoma del Estado de México 1 , CP 50200 Toluca, Mexico

2. CONACYT Research Fellow-Centro de Ingeniería y Desarrollo Industrial 2 , CP 76130 Querétaro, Mexico

Abstract

New parameterizations for the Lennard-Jones 12/6 potential capable of reproducing the vapor pressure and surface tension with sufficient precision, but not the liquid–vapor equilibrium densities for the case of simple fluids that include Ar, Kr, Xe, Ne, and CH4 are presented in this work. These results are compared with those derived from the family of Mie(n, 6) potentials, which adequately reproduce the coexistence curve and the vapor pressure, leaving aside the surface tension. In addition, a detailed analysis is presented on different parameterizations and methodologies, which have been developed in recent decades to estimate the interfacial properties of interest here for simple fluids, such as argon, which is a molecule that is, in principle, “simple” to study but that clearly reveals the enormous discrepancy between the results reported in the literature throughout these years. These facts undoubtedly reveal one of the fundamental problems in the context of molecular thermodynamics of fluids: reproducing different thermodynamic properties with sufficient precision from a single set of free parameters for some interaction potential. In order to show the scope of the parameterizations presented for the Lennard-Jones model, they were successfully applied to the case of binary mixtures, which included Ar–Kr, Ar–CH4, and Xe–Kr. Finally, and with the aim of showing a possible solution to the problem posed in this research, results of the same interfacial properties above mentioned for argon and methane were presented in this work by using a set of molecular interactions, called ANC2s, whose flexibility allowed to reproduce the experimental evidence with just one parameterization. The results reported in this work were generated using molecular dynamics simulations.

Funder

Laboratorio Nacional de Computo de Alto Rendimiento

Laboratorio Nacional de Supercómputo del Sureste de Mexico

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3