Affiliation:
1. Department of Engineering Physics, Air Force Institute of Technology 1 , 2950 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433, USA
2. Mat3ra 2 , 1212 Broadway Plaza, Ste #2100, Walnut Creek, California 94596, USA
Abstract
Analyzing plastic flow in refractory alloys is relevant to many different commercial and technological applications. In this study, screw dislocation statics and dynamics were studied for various compositions of the body-centered cubic binary alloy tungsten–molybdenum (W–Mo). The core structure did not appear to change for different alloy compositions, consistent with the literature. The pure tungsten and pure molybdenum samples had the lowest plastic flow, while the highest dislocation velocities were observed for equiatomic, W0.5Mo0.5 alloys. In general, dislocation velocities were found to largely align with a well-established dislocation mobility phenomenological model supporting two discrete dislocation mobility regimes, defined by kink-pair nucleation and migration and phonon drag, respectively. Velocities were observed to increase with temperature and applied shear stress and with decreasing kink-pair formation energies. The 50 at. % W alloy was found to possess the lowest kink-pair formation energy, consistent with its higher dislocation velocity. Furthermore, molybdenum segregation to the dislocation line was found to be thermodynamically favorable specifically at low temperatures and was observed to significantly delay the onset of dislocation glide and then generally enhance dislocation velocities thereafter. This behavior was explained by examining the energy landscape of dislocation glide. Furthermore, a segregation/de-segregation phase transition was observed to occur around 2500 K beyond which no preferential segregation to the dislocation was found. Overall, our findings suggest strong dependencies of plastic flow in W–Mo alloys on composition and elemental segregation, in agreement with the available literature, and may provide useful information to guide the design of next generation structural materials.
Funder
Defense Threat Reduction Agency
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献