Understanding the stochastic dynamics of sequential decision-making processes: A path-integral analysis of multi-armed bandits

Author:

Li Bo12ORCID,Yeung Chi Ho3ORCID

Affiliation:

1. School of Science, Harbin Institute of Technology (Shenzhen) 1 , Shenzhen 518055, China

2. Non-linearity and Complexity Research Group, Aston University 2 , Birmingham B4 7ET, United Kingdom

3. Department of Science and Environmental Studies, The Education University of Hong Kong 3 , 10 Lo Ping Road, Tai Po, Hong Kong

Abstract

The multi-armed bandit (MAB) model is one of the most classical models to study decision-making in an uncertain environment. In this model, a player chooses one of K possible arms of a bandit machine to play at each time step, where the corresponding arm returns a random reward to the player, potentially from a specific unknown distribution. The target of the player is to collect as many rewards as possible during the process. Despite its simplicity, the MAB model offers an excellent playground for studying the trade-off between exploration vs exploitation and designing effective algorithms for sequential decision-making under uncertainty. Although many asymptotically optimal algorithms have been established, the finite-time behaviors of the stochastic dynamics of the MAB model appear much more challenging to analyze due to the intertwine between the decision-making and the rewards being collected. In this paper, we employ techniques in statistical physics to analyze the MAB model, which facilitates the characterization of the distribution of cumulative regrets at a finite short time, the central quantity of interest in an MAB algorithm, as well as the intricate dynamical behaviors of the model. Our analytical results, in good agreement with simulations, point to the emergence of an interesting multimodal regret distribution, with large regrets resulting from excess exploitation of sub-optimal arms due to an initial unlucky output from the optimal one.

Funder

National Natural Science Foundation of China

Leverhulme Trust

Marie Sklodowska-Curie Grant

Harbin Institute of Technology

Research Grants Council, University Grants Committee

Dean's Research Fund of the Faculty of Liberal Arts and Social Sciences, The Education University of Hong Kong

Internal Research Grants, The Education University of Hong Kong

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3