Tau and tubulin protein aggregation characterization by solid-state nanopore method and atomic force microscopy

Author:

Acharjee Mitu C.1ORCID,Li Haopeng2ORCID,Rollings Ryan3,Ma Bo4ORCID,Tung Steve4,Li Jiali3ORCID

Affiliation:

1. Material Science and Engineering, University of Arkansas 1 , Fayetteville, Arkansas 72701, USA

2. Cell and Molecular Biology, Mechanical Engineering, University of Arkansas 2 , Fayetteville, Arkansas 72701, USA

3. Department of Physics, University of Arkansas 3 , Fayetteville, Arkansas 72701, USA

4. Mechanical Engineering, University of Arkansas 4 , Fayetteville, Arkansas 72701, USA

Abstract

In this study, a silicon nitride nanopore-based sensing system was used to measure tau and tubulin monomers and their aggregations in salt solution at a single molecule level. Nanopores (6–30 nm) were fabricated on silicon nitride membranes supported by silicon substrates using a combination of focused ion beam milling and ion beam sculpting. When a charged protein molecule in the salt solution passes through a nanopore driven by an applied voltage, the protein molecule increases pore resistivity, which induces an ionic current drop that can be measured. The current drop amplitude is directly proportional to the local excluded volume of the protein molecule in the nanopore. We measured the monomers and aggregations of tau and tubulin proteins at biased voltages from 60 to 210 mV in a solution of pH 7.0–10. Our results showed that (1) the nanopore method was able to differentiate tau and tubulin proteins in their monomer and aggregated forms by their excluded volumes; (2) the most probable aggregation form was dimer for α- and β-tubulin and pentamer for αβ tubulin plus tau under experimental conditions; (3) the protein excluded volumes measured by the nanopore method depended on the applied voltage, and this observation could be explained by the nonuniform charge distribution of proteins. The monomer and aggregated proteins were further analyzed using atomic force spectroscopy (AFM), and protein volumes estimated by AFM were consistent with nanopore results.

Funder

Arkansas Biosciences Institute

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3