Tuning the electronic and optical properties of small organic acenedithiophene molecular crystals for photovoltaic applications: First principles calculations

Author:

Lazaar Koussai1ORCID,Gueddida Saber2ORCID,Said Moncef3ORCID,Lebègue Sébastien2ORCID

Affiliation:

1. Laboratoire des Nanomatériaux et Systèmes pour les Énergies Renouvelables (LaNSER), Centre de Recherches et des Technologies de l’Energie 1 , Technopole Borj-Cedria, Hammam Lif 2050, Tunisia

2. Univ. Lorraine, LPCT, CNRS UMR7019 2 , F-54506 Vandoeuvre-Les-Nancy, France

3. Université de Monastir, Faculté des Sciences de Monastir, Laboratoire de la Matière Condensée et des Nanosciences (LMCN) 3 , LR11ES40, Avenue de l’Environnement, 5000 Monastir, Tunisia

Abstract

Periodic density functional theory was employed to investigate the impact of chemical modifications on the properties of π-conjugated acenedithiophene molecular crystals. Here, we highlight the importance of the β-methylthionation effect, the position of the sulfur atoms of the thiacycle group and their size, and the number of central benzene rings in the chemical modification strategy. Our results show that the introduction of the methylthio groups at the β-positions of the thiophene and the additional benzene ring at the center of the BDT crystal structure are a promising strategy to improve the performance of organic semiconductors, as observed experimentally. We found that β-MT-ADT exhibits large charge carrier mobility, which is in good agreement with the experimental results and comparable to that of rubrene. In addition, the electronic and optical properties of these ambipolar materials suggest promising performances with β-MT-ADT > ADT >β-MT-NDT > NDT > BEDT-BDT >β-MT-BDT > BDT. Moreover, functionalization with thiacycle-fused sulfur atoms of different sizes and numbers improve the properties of BDT but is still less efficient than the methylthionation effect. Overall, our findings suggest a promising molecular modification strategy for possibly high performance ambipolar organic semiconducting materials.

Funder

Université de Lorraine

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3