Quantum bath augmented stochastic nonequilibrium atomistic simulations for molecular heat conduction

Author:

Chen Renai12ORCID,Dinpajooh Mohammadhasan3ORCID,Nitzan Abraham14ORCID

Affiliation:

1. Department of Chemistry, University of Pennsylvania 1 , Philadelphia, Pennsylvania 19104, USA

2. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory 2 , Los Alamos, New Mexico 87544, USA

3. Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory 3 , Richland, Washington 99352, USA

4. School of Chemistry, Tel Aviv University 4 , Tel Aviv 69978, Israel

Abstract

Classical molecular dynamics (MD) has been shown to be effective in simulating heat conduction in certain molecular junctions since it inherently takes into account some essential methodological components which are lacking in the quantum Landauer-type transport model, such as many-body full force-field interactions, anharmonicity effects and nonlinear responses for large temperature biases. However, the classical MD reaches its limit in the environments where the quantum effects are significant (e.g. with low-temperatures substrates, presence of extremely high frequency molecular modes). Here, we present an atomistic simulation methodology for molecular heat conduction that incorporates the quantum Bose–Einstein statistics into an “effective temperature” in the form of a modified Langevin equation. We show that the results from such a quasi-classical effective temperature MD method deviates drastically when the baths temperature approaches zero from classical MD simulations and the results converge to the classical ones when the bath approaches the high-temperature limit, which makes the method suitable for full temperature range. In addition, we show that our quasi-classical thermal transport method can be used to model the conducting substrate layout and molecular composition (e.g. anharmonicities, high-frequency modes). Anharmonic models are explicitly simulated via the Morse potential and compared to pure harmonic interactions to show the effects of anharmonicities under quantum colored bath setups. Finally, the chain length dependence of heat conduction is examined for one-dimensional polymer chains placed in between quantum augmented baths.

Funder

National Science Foundation

Center for Nonlinear Studies, Los Alamos National Laboratory

Chemical Sciences, Geosciences, and Biosciences Division

U.S. Department of Energy

School of Arts and Sciences, University of Pennsylvania

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3