Author:
Reddy Kumbala Pradeep,Raju K. Ruben,Mouli K. Chandra,Praveen M.
Reference15 articles.
1. Hurley, T.; Perdomo, J.E.; Perez-Pons, A. HMM-Based Intrusion Detection System for Software Defined Networking. In Proceedings of the 2020 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2020; pp. 617–621.
2. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 2, 41–50.
3. Gómez, J., Gil, C., Baños, R., Márquez, A.L., Montoya, F.G., Montoya, M.G., “A Pareto-based multi-objective evolutionary algorithm for automatic rule generation in network intrusion detection systems”, Soft Computers, vol-17, 255–263, 2020.
4. Dey, S.K., Rahman, M.M, “Effects of Machine Learning Approach in Flow-Based Anomaly Detection on Software-Defined Networking”, Symmetry 2020.
5. Gao, M.; Ma, L.; Liu, H.; Zhang, Z.; Ning, Z.; Xu, J. “Malicious Network Traffic Detection Based on Deep Neural Networks and Association Analysis Sensors,” Year: 2020.