Multiple magnetic droplet solitions from exotic spin–orbit torques

Author:

Klause Robin1ORCID,Hoffmann Axel1ORCID

Affiliation:

1. Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA

Abstract

Materials with large spin–orbit interactions generate pure spin currents with spin polarizations parallel to the interfacial surfaces that give rise to conventional spin–orbit torques. These spin–orbit torques can only efficiently and deterministically switch magnets with in-plane magnetization. Additional symmetry breaking, such as in non-collinear antiferromagnets, can generate exotic, unconventional spin–orbit torques that are associated with spin polarizations perpendicular to the interfacial planes. Here, we use micromagnetic simulations to investigate whether such exotic spin–orbit torques can generate magnetic droplet solitions in out-of-plane magnetized geometries. We show that a short, high current pulse followed by a lower constant current can nucleate and stabilize magnetic droplets. Through specific current pulse lengths, it is possible to control the number of droplets in such a system, since torques are generated over a large area. Additionally, the nucleation current scales with the out-of-plane component of the spin polarization and is linear as a function of magnetic field strength.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference33 articles.

1. A. Hoffmann , S. Ramanathan , J. Grollier , A. D. Kent , M. Rozenberg , I. K. Schuller , O. Shpyrko , R. Dynes , Y. Fainman , A. Frano , F. E. E. G. Galli , V. Lomakin , S. P. Ong , A. K. Petford-Long , J. A. Schuller , M. D. Stiles , Y. Takamura , and Y. Zhu , “ Quantum materials for energy-efficient neuromorphic computing,” arXiv:2204.01832 (2022).

2. Neuromorphic computing with nanoscale spintronic oscillators

3. Neuromorphic spintronics

4. Mutual phase-locking of microwave spin torque nano-oscillators

5. Phase-locking in double-point-contact spin-transfer devices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3