Affiliation:
1. INRIM, Advanced Materials and Life Sciences Division, Strada delle Cacce 91, 10135 Torino (TO), Italy
Abstract
A machine learning approach has been applied to the prediction of magnetic hysteresis properties (coercive field, magnetic remanence, and hysteresis loop area) of magnetic nanoparticles for hyperthermia applications. Trained on a dataset compiled from numerical simulations, a neural network and a random forest were used to predict power losses of nanoparticles as a function of their intrinsic properties (saturation, anisotropy, and size) and mutual magnetic interactions, as well as of application conditions (temperature, frequency, and applied field magnitude), for values of the parameters not represented in the database. The predictive ability of the studied machine learning approaches can provide a valuable tool toward the application of magnetic hyperthermia as a precision medicine therapy tailored to the patient’s needs.
Subject
General Engineering,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献