Unveiling the spatiotemporal evolution of liquid-lens coalescence: Self-similarity, vortex quadrupoles, and turbulence in a three-phase fluid system

Author:

Padhan Nadia Bihari1ORCID,Pandit Rahul1ORCID

Affiliation:

1. Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India

Abstract

The coalescence of liquid lenses represents a fundamental challenge within the domains of fluid dynamics and statistical physics, particularly in the context of complex multi-phase flows. We demonstrate that the three-phase Cahn–Hilliard–Navier–Stokes (CHNS3) system provides a natural theoretical framework for studying liquid-lens coalescence, which has been investigated in recent experiments. Our extensive direct numerical simulations of lens coalescence, in the two and three dimensional (2D and 3D) CHNS3, uncover the rich spatiotemporal evolution of the fluid velocity u and vorticity ω, the concentration fields c1, c2, and c3 of the three liquids, and an excess pressure PℓG, which we define in terms of these concentrations via a Poisson equation. We find, in agreement with experiments, that as the lenses coalesce, their neck height h(t)∼tαv, with αv≃1 in the viscous regime, and h(t)∼tαi, with αi≃2/3 in the inertial regime. We obtain the crossover from the viscous to the inertial regimes as a function of the Ohnesorge number Oh, a dimensionless combination of viscous stresses and inertial and surface tension forces. We show that a vortex quadrupole, which straddles the neck of the merging lenses, and PℓG play crucial roles in distinguishing between the viscous- and inertial-regime growths of the merging lenses. In the inertial regime, we find signatures of turbulence, which we quantify via kinetic-energy and concentration spectra. Finally, we examine the merger of asymmetric lenses, in which the initial stages of coalescence occur along the circular parts of the lens interfaces; in this case, we obtain power-law forms for the h(t) with inertial-regime exponents that lie between their droplet-coalescence and lens-merger counterparts.

Funder

Science and Engineering Research Board

National Supercomputing Mission, India

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3