Tomographic and centroid reconstructions of plasma emission on C-2W via enhanced 300-channel bolometry system

Author:

Bondarenko A. S.1ORCID,Aviles J.1ORCID,Alexander A.1,Korepanov A.1,Mendoza R.1,

Affiliation:

1. TAE Technologies, Inc., 19631 Pauling, Foothill Ranch, California 92610, USA

Abstract

The C-2W experimental device at TAE Technologies utilizes neutral beam injection and edge biasing to sustain long-lived, stable field reversed configuration (FRC) plasma. An ongoing effort is under way to optimize the electrode biasing system, which provides boundary control to stabilize the FRC. To this end, tomography offers a powerful and non-invasive technique as tomographic reconstruction of the FRC emission profile provides an important assessment of global stability. Recently, a new signal acquisition system was implemented on a bolometer array dedicated to tomography on C-2W, significantly enhancing the signal-to-noise of the collected data. The array consists of 300 simultaneously digitized photodiode channels that respond to a broad range of wavelengths, from soft x-ray to near-infrared, as well as energetic particles, yielding 180 unique lines of sight that intersect a toroidal plane of the FRC near the mid-plane. Utilizing the collected photo-signals from a set of plasma discharges in which the electrode biasing was intentionally terminated mid-shot, time-resolved reconstruction of the plasma emissivity is achieved via pixel-based 1D and 2D tomographic algorithms, revealing sharply annular profiles with a clear magnetohydrodynamic (MHD) mode structure. In addition, reconstruction of the plasma center-of-emission trajectories via a centroid algorithm applied to the same set of discharges demonstrates a cyclical plasma wobble. Crucially, both the tomography reconstruction and centroid reconstruction indicate an n = 1 toroidal mode that reverses from the electron diamagnetic direction to the ion diamagnetic direction and grows in amplitude after bias termination, qualitatively consistent with the expected stabilizing effect of electrodes.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3