Nanoscopic spin-wave channeling along programmable magnetic domain walls in a CoFeB/BaTiO3 multiferroic heterostructure

Author:

Zhu Weijia1ORCID,Qin Huajun23ORCID,van Dijken Sebastiaan1ORCID

Affiliation:

1. NanoSpin, Department of Applied Physics, Aalto University School of Science 1 , P.O. Box 15100, FI-00076 Aalto, Finland

2. School of Physics and Technology, Wuhan University 2 , Wuhan 430072, China

3. Wuhan Institute of Quantum Technology 3 , Wuhan 430206, China

Abstract

We report a micromagnetic study on spin-wave propagation along magnetic domain walls in a ferromagnetic/ferroelectric bilayer. In our system, strain coupling between the two ferroic materials and inverse magnetostriction produce a fully correlated domain pattern wherein straight and narrow ferroelectric domain walls pin the magnetic domain walls. Consequently, an external magnetic field does tailor the spin structure of the magnetic domain walls instead of moving them. We use experimental parameters from a previously studied CoFeB/BaTiO3 material system to investigate the potential of artificial multiferroics for programmable nanoscopic spin-wave channeling. We show that spin waves are transported along the pinned magnetic domain walls at zero magnetic field and low frequency due to a local demagnetizing field. Further, switching of the domain wall spin structure from a head-to-tail to a head-to-head configuration abruptly changes the propagating spin-wave mode. We study the effect of magnetic field strength on the localized modes and discuss reversible control of spin-wave channeling via electric-field-driven magnetic domain wall motion. Nanoscopic guiding of propagating spin waves by an electric field, in combination with positional robustness to and mode programming by an external magnetic field, offers prospects for low-power and reconfigurable domain-wall-based magnonic devices.

Funder

Academy of Finland

Horizon 2020 Framework Programme

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference31 articles.

1. Magnonic logic circuits;J. Phys. D,2010

2. Magnonics;J. Phys. D,2010

3. The building blocks of magnonics;Phys. Rep.,2011

4. Magnon spintronics;Nat. Phys.,2015

5. The 2021 magnonics roadmap;J. Phys.: Condens. Matter,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3