Affiliation:
1. Department of Mechanical Engineering, Purdue University, Indiana 47905, USA
2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts 02139, USA
Abstract
We propose a constitutive model to predict the viscosity of fiber suspensions, which undergoes shear thinning, at various volume fractions, aspect ratios, and shear stresses/rates. We calibrate the model using the data from direct numerical simulation and prove the accuracy by predicting experimental measurements from the literature. We use a friction coefficient decreasing with the normal load between the fibers to quantitatively reproduce the experimentally observed shear thinning in fiber suspensions. In this model, the effective normal contact force, which is directly proportional to the bulk shear stress, determines the effective friction coefficient. A rise in the shear stress reduces the effective friction coefficient in the suspension. As a result, the jamming volume fraction increases with the shear stress, resulting in a shear thinning in the suspension viscosity. Moreover, we extend the model to quantify the effects of fiber volume fraction and aspect ratio in the suspension. We calibrate this model using the data from numerical simulations for the rate-controlled shear flow. Once calibrated, we show that the model can be used to predict the relative viscosity for different volume fractions, shear stresses, and aspect ratios. The model predictions are in excellent agreement with the available experimental measurements from the literature. The findings of this study can potentially be used to tune the fiber size and volume fraction for designing the suspension rheology in various applications.
Funder
U.S. Department of Energy
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献