Estimating viscoelastic, soft material properties using a modified Rayleigh cavitation bubble collapse time

Author:

Yang JinORCID,McGhee Alexander1ORCID,Radtke Griffin1ORCID,Rodriguez Mauro2ORCID,Franck Christian1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Madison 2 , Madison, Wisconsin 53706, USA

2. School of Engineering, Brown University 3 , Providence, Rhode Island 02912, USA

Abstract

Accurate determination of high strain rate (>103 1/s) constitutive properties of soft materials remains a formidable challenge. Albeit recent advancements among experimental techniques, in particular inertial microcavitation rheometry (IMR), the intrinsic requirement to visualize the bubble cavitation dynamics has limited its application to nominally transparent materials. Here, in an effort to address this challenge and to expand the experimental capability of IMR to optically opaque materials, we investigated whether one could use the acoustic signature of the time interval between the bubble's maximum radius and first collapse time point, characterized as the bubble collapse time, to infer the viscoelastic material properties without being able to image the bubble directly in the tissue. By introducing a modified Rayleigh collapse time for soft materials, which is strongly dependent on the stiffness of the material at hand, we show that, in principle, one can obtain an order of magnitude or better estimate of the viscoelastic material properties of the soft material under investigation. Using a newly developed energy-based theoretical framework, we show that for materials stiffer than 10 kPa the bubble collapse time during a single bubble cavitation event can provide quantitative and meaningful information about the constitutive properties of the material at hand. For very soft materials (i.e., shear modulus less than 10 kPa), our theory shows that unless the collapse time measurement has very high precision and low uncertainties, the material property estimates based on the bubble collapse time only will not be accurate and require visual resolution of the full cavitation kinematics.

Funder

Office of Naval Research

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3