Generalized Dinesh–Umesh–Sanjay generalized exponential distribution with application to engineering data

Author:

Alrashidi Afaf1ORCID,Ragab Ibrahim E.2ORCID

Affiliation:

1. Department of Statistics, Faculty of Science, University of Tabuk 1 , Tabuk, Saudi Arabia

2. Department of Basic Sciences, Egyptian Institute of Alexandria Academy for Management and Accounting, EIA 2 , Alexandria, Egypt

Abstract

Several academics have expanded the generalized exponential distribution. The generalized Dinesh–Umesh–Sanjay generalized exponential (GDUS-GE) distribution with three parameters is introduced. The GDUS-GE distribution outperforms the moment exponential distribution in terms of fit. For numerous GDUS-GE distribution characteristics, exact formulations for ordinary moments, incomplete and conditional moments, the moment generating function, and information measures are discovered. The maximum likelihood approach was used to estimate model parameters. A simulated study was used to explore the estimators’ behavior. Two real-world datasets were used to assess the practical significance of the GDUS-GE distribution. In terms of performance, we demonstrate that the GDUS-GE distribution outperforms all other competing models.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families;Marshall;Biometrika,1997

2. A new family of generalized distributions;Cordeiro;J. Stat. Comput. Simul.,2011

3. A new distribution using sine function-its application to bladder cancer patients data;Kumar;J. Stat. Appl. Probab.,2015

4. A new method for generating families of continuous distributions;Alzaatreh;Metron,2013

5. The odd Lindley-G family of distributions;Gomes-Silva;Austrian J. Stat.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3