Integrated information decomposition unveils major structural traits of in silico and in vitro neuronal networks

Author:

Menesse Gustavo12ORCID,Houben Akke Mats3ORCID,Soriano Jordi3ORCID,Torres Joaquín J.1ORCID

Affiliation:

1. Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada 1 , 18071 Granada, Spain

2. Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción 2 , 111451 San Lorenzo, Paraguay

3. Departament de Física de la Matèria Condensada, Universitat de Barcelona and Universitat de Barcelona Institute of Complex Systems (UBICS) 3 , E-08028 Barcelona, Spain

Abstract

The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition (Φ-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Φ-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.

Funder

Consejería de Transformación Económica, Industria, Conocimiento y Universidades

Ministerio de Ciencia, Innovación y Universidades

HORIZON EUROPE European Research Council

Generalitat de Catalunya

Publisher

AIP Publishing

Reference33 articles.

1. Multisensory integration in C. elegans;Curr. Opin. Neurobiol.,2017

2. The Local Information Dynamics of Distributed Computation in Complex Systems

3. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems;Phys. Rev. E,2015

4. P. A. M. Mediano , F. E.Rosas, A. I.Luppi, R. L.Carhart-Harris, D.Bor, A. K.Seth, and A. B.Barrett, “Towards an extended taxonomy of information dynamics via integrated information decomposition,” arXiv:2109.13186 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3